رساله gl/l (1104)
رساله gl/l (1104)
مقدمه
در دنیای پیشرفته امروزی و با توجه به پیشرفت های صورت گرفته در زمینه های مختلف علمی صنعت بتن نیز دچار تحول گردیده که تولید بتن سبک نیز حاصل همین پیشرفت ها می باشد. بتنی که علاوه بر کاهش بار مرده ساختمان از نیروی وارد به سازه در اثر شتاب زلزله می کاهد و در صورت تخریب وزن آوار حاصل نیز کاهش می یابد و امروزه آنرا به عنوان بتن قرن می نامند .
بتن سبک با توجه به ویژگی هایی که دارد دارای کاربردهای مختلف می باشد که برحسب وزن مخصوص و مقاومت فشاری آن تفکیک می گردد.
بتن سبک
اولین گزارشهای تاریخی در مورد کاربرد بتن سبک و مصالح سبک وزن به روم باستان بر می گردد. رومیان در احداث معبد پانتئون و ورزشگاه کلوزیوم از پومیس که نوعی مصالح سبک است استفاده کرده اند. کاربرد بتن سبکدانه پس از تولید سبکدانه های مصنوعی و فراوری شده در اوایل قرن بیستم وارد مرحله جدیدی شد. در سال 1918،S. J. Hayde با استفاده از کوره دوار اقدام به منبسط کردن رس و شیل کرد و بدینوسلیه سبکدانه ای مصنوعی تولید کرد که از آنها در ساخت بتن استفاده شد. تولید تجاری روباره های منبسط شده نیز از سال 1928 آغاز گردید.
این سبکدانه مصنوعی در هنگام جنگ جهانی اول به دلیل محدودیت دسترسی به ورق فولادی برای ساخت کشتی بکار رفت. کشتی Atlantus به وزن 3000 تن که با بتن سبک هایدیتی ساخته شد، در اواخر سال 1918 به آب افتاد. در سال 1919 کشتی Selma به وزن 7500 تن و طول 132 متر با همین نوع بتن ساخته و به آب انداخته شد. تا آخر جنگ جهانی اول و سپس تا سال 1922 کشتی ها و مخازن شناور متعددی ساخته شد که یکی از آن ها Peralta تا سال های اخیر شناور بود.
برنامه ساخت کشتی ها در اواسط جنگ جهانی دوم متوقف شد و دوباره به دلیل محدودیت تولید ورق فولادی مورد توجه قرار گرفت. تا پایان جنگ جهانی دوم 24 کشتی اقیانوس پیما و 80 بارج دریایی ساخته شد که ساخت آن ها در دوران صلح، اقتصادی محسوب نمی گشت. ظرفیت این کشتی ها 3 تا 140000 تن بود.
در سال 1948 اولین ساختمان با استفاده از شیل منبسط شده در پنسیلوانیای شرقی احداث گردید. در ادامه، از سال 1950 ساخت بتن سبک گازی اتوکلاو شده در انگلستان متداول شد. اولین ساختمان بتن سبکدانه مسلح در این کشور که یک ساختمان سه طبقه بود در سال 1958 و در شهر برنت فورد احداث گردید.
ساختمان هتل پارک پلازا در سنت لوئیز، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سیتی در سال 1929 از جمله ساختمان های دهه 20 و 30 میلادی ساخته شده در آمریکای شمالی با استفاده از بتن سبک هستند. ساختمان 42 طبقه در شیکاگو، ترمینال TWA در فرودگاه نیویورک در سال 1960، فرودگاه Dulles در واشنگتن در سال 1962، کلیسایی در نروژ در سال 1965، پلی در وایسبادن آلمان در سال 1966 و پل آب بر در روتردام هلند در سال 68 از جمله ساختمان هایی هستند که با بتن سبکدانه ساخته شده اند.
در هلند، انگلستان، ایتالیا و اسکاتلند نیز در دهه 70 و 80 پل هایی با دهانه های مختلف ساخته و با موفقیت بهره برداری شده اند. در سال های 1970 ساخت بتن سبکدانه پرمقاومت آغاز شد و در دهه 80 به دلیل نیاز برخی شرکت های نفتی در امریکا و نروژ برای ساخت سازه ها و مخازن ساحلی و فراساحلی مانند سکوهای نفتی یک رشته تحقیقات وسیع برای ساخت بتن سبکدانه پرمقاومت در این دو کشور با هدایت واحد آغاز شد که نتایج آن در اواخر دهه 80 و اوایل دهه 90 منتشر گشت.
در سالیان اخیر نیز استفاده بتن سبک در دال سقف ساختمانهای بلند مرتبه، عرشه پلها و دیگر موارد مشابه و همچنین کاربردهای خاص مانند عرشه و پایه دکلهای استخراج نفت کاربرد فراوانی یافته است.
طبقه بندی بتن سبک بر مبنای مقاومتی
بتنهای سبک از دیدگاه مقاومتی در سه دسته طبقهبندی میشوند که عبارتند از بتن سبک غیرسازهای، بتن سبک سازهای و بتن سبک با مقاومت متوسط که در ادامه به آن پرداخته می شود.بتن سبک غیرسازهای که معمولاً به عنوان جداسازهای سبک مورد استفاده قرار میگیرد، دارای جرم مخصوص کمتر از 800 کیلوگرم بر مترمکعب است. با وجود جرم مخصوص کم، مقاومت فشاری آن حدود 35/0 تا 7 نیوتن بر میلیمترمربع میباشد. از معمولیترین سنگدانههای مورد مصرف در این نوع بتن می توان به پرلیت (نوعی سنگ آذرین) و ورمیکولیت (مادهای با ساختار ورقهای شبیه لیکا)اشاره کرد.
بتنهای سبک سازهای دارای مقاومت و وزن مخصوص کافی میباشند، به گونهای که می توان از آنها در اعضای سازهای استفاده کرد. این بتنها عموماً دارای جرم مخصوصی بین 1400 تا 1900 کیلوگرم بر مترمکعب بوده و حداقل مقاومت فشاری تعریف شده برای آنها 17 نیوتن بر میلیمتر مربع (مگاپاسکال) می باشد. در بعضی حالات امکان افزایش مقاومت تا 60 نیوتن بر میلیمتر مربع نیز وجود دارد. در مناطق زلزله خیز، آییننامهها حداقل مقاومت فشاری بتن سبک را به 20 نیوتن بر میلیمتر مربع محدود میکنند.
بتنهای سبک با مقاومت متوسط، از لحاظ وزن مخصوص و مقاومت فشاری در محدودهای بین بتنهای سبک غیرسازه ای و سازهای قراردارند، به گونهای که مقاومت فشاری آنها بین 7 تا 17 نیوتن بر میلیمترمربع و جرم مخصوص آنها بین 800 تا 1400 کیلوگرم بر مترمکعب می باشد.
بتن سبک غیرسازهای
این نوع بتنها با جرم مخصوصی معادل 800 کیلوگرم بر مترمکعب و کمتر، به عنوان تیغههای جداساز و عایقهای صوتی در کف بسیار مؤثر هستند. این نوع بتن میتواند در ترکیب با مواد دیگر در دیوار، کف و سیستمهای مختلف سقف مورد استفاده قرار گیرد.
مزیت عمده آن، کاهش هزینههای لازم برای تهویهی گرمایی یا سرمایی فضاهای داخلی ساختمان و کاهش انتقال صوت بین طبقات و فضاهای ساختمان می باشد. بتنهای سبک غیرسازهای بر اساس ساختارداخلی میتوانند به دو گروه جداگانه تقسیمبندی شوند.
دسته اول بتنهای اسفنجی که در حین ساخت آنها با ایجاد کف، حبابهای هوا در خمیر سیمان یا در ملات سیمان – سنگدانه ایجاد می گردد. کف مورد نظر یا از طریق مواد کفزا در حین اختلاط تولید شده و یا به صورت کف آماده به مخلوط اضافه میشود. بتن اسفنجی میتواند جرم مخصوصی تا حدود 240 کیلوگرم بر مترمکعب داشته باشد.
دسته دوم بتن با سنگدانه سبک یا به اختصار بتن سبکدانه است که با استفاده از پرلیت، ورمیکولیت منبسط شده و یا دیگر سبکدانه های طبیعی و مصنوعی ساخته میشوند. جرم مخصوص خشک این مخلوط بین 240 تا 960 کیلوگرم بر مترمکعب میباشد.
امروزه اضافه کردن ریزدانههایی با وزن معمولی، موجب افزایش وزن بتن و مقاومت آن می شود، لیکن به منظورحصول خواص عایقبندی حرارتی (ضریب انتقال حرارت پایین)، حداکثر جرم مخصوص به 800 کیلوگرم در مترمکعب محدود میگردد.
هنگام ساخت و استفاده از بتن سبک غیرسازهای، سعی بر این است که با کاهش وزن بتوان خصوصیات عایق حرارتی را افزایش داد، اما ذکر این مطلب ضروری است که باکاهش وزن مخصوص بتن، مقاومت آن نیز کاهش مییابد. مقاومت فشاری و وزن مخصوص بتن، ارتباط نزدیکی با هم دارند و با افزایش وزن مخصوص، بالطبع باید مقاومت بالاتری را انتظار داشت. با توجه به مقاومت به دست آمده از این نوع بتن، محل کاربرد آن تعیین می گردد. به عنوان مثال بتنهایی با مقاومت فشاری حدود 7/0 نیوتن بر میلیمترمربع و کمتر برای عایقسازی لولههای بخار زیرزمینی مناسب هستند و از بتنهای با مقاومت بالاتر تا حدود 5/3 نیوتن بر میلیمتر مربع در پیادهروها استفاده می شود. باید توجه داشت که انقباض بتنهای سبک در هنگام خشک شدن در اکثر موارد و به خصوص در موارد حذف سنگدانههای درشت از مخلوط، همواره مشکلساز است.
بتن سبک با مقاومت متوسط
بتنهای سبک موجود در این طبقه عمدتا از نوع بتنهای سبکدانه و بتنهای با ساختار باز می باشند. به عبارت دیگر برای کاهش چگالی بتن از سنگدانه های سبک طبیعی یا مصنوعی استفاده شده است. سبکدانه های مورد استفاده در بتنهای سبک با مقاومت متوسط معمولا از یکی از روشهای آهکی شدن (تکلیس)، سنگدانهی کلینگر، محصولات منبسط شدهای نظیر روبارههای منبسط شده، خاکستر بادی، شیل و اسلیت یا سنگدانههای تولیدی از مصالح طبیعی مانند پوکه سنگهای آذرین و سنگهای آذرین متخلخل (توف) تولید میشوند. جرم مخصوص بتن ساخته شده با سنگدانههای فوق بین 800 تا 1400 کیلوگرم بر مترمکعب است. کاربرد مواد افزودنی نظیر تسریع کنندهها و روانکنندهها میتواند در تغییر مقاومت بتنهای ساخته شده با سنگدانههای تولید شده از روشهای مذکور موثر باشد. کاربرد این بتنها معمولا در بلوکهای مجوف بتنی، کف سازیها و موارد مشابه است.
بتن سبک سازه ای
بتنهای سبک سازه ای بتنهایی هستند که علی رغم دارا بودن چگالی کمتر از 2000 کیلوگرم بر مترمکعب، مقاومت فشاری بیش از 17 مگاپاسکال دارند. ساخت این بتنها صرفا با استفاده از سنگدانه های سبک و مقاوم امکان پذیر است. تمام بتنهای سبک سازه ای از خانواده بتن های سبکدانه می باشند که در آن برای کاهش وزن مخصوص بتن از سنگدانه های سبک استفاده شده است. به این دلیل بعضا از عبارات بتن سبکدانه و بتن سبک سازه ای برای بیان یک مفهوم استفاده می شود. در بتنهای سبکدانه سازهای از سنگدانههایی استفاده میشود که بتن ساخته شده مقاومتی بیش از 17 مگاپاسکال و جرم مخصوصی کمتر از 2000 کیلوگرم بر مترمکعب را دارا باشد. سنگدانههایی که این شرایط را عموماً برآورد میکنند و طبق استاندارد ASTM-C330 برای ساخت بتن سبک سازهای مورد استفاده قرار می گیرند، عمدتا عبارتند از:
الف) شیل، رس و اسلیت منبسط شده در کورهی دوار
ب)سنگدانه هایی که از فرآیند های کلوخه ای شدن به دست می آیند
ج) سربارههای منبسط شده
د) پوکههای معدنی
هـ) پوکههای صنعتی
و) خاکستر بادی ته نشین شده
تأمین مقاومت فشاری معادل 20 نیوتن بر میلیمترمربع و بیشتر با بعضی از این سنگدانهها امکانپذیر است. شرایط سایر سنگدانهها نیزطوری است که قادر به حصول حداقل مقاومت فشاری مقرر شده برای بتن سبک سازهای میباشند. همانطور که پیش از این ذکر شد، مقاومت بتن سبک تابعی از جرم مخصوص آن است. باید توجه داشت که جرم مخصوص بتن عمدتاً متأثر از جرم مخصوص سنگدانههای مصرفی است، به گونهای که استفاده از مصالح سبکتر موجب کاهش وزن مخصوص بتن می شود. ولی استفاده از مصالح سنگینتر از سبکدانهها، لزوماً باعث افزایش مقاومت بتن ساخته شده نخواهد شد.
بیشترین مقاومت بتن سبکدانه معمولا وقتی حاصل می شود که از سبکدانه های ساخته شده از شیل، رس و اسلیت منبسط شده در فرآیند کوره دوار برای سبک سازی چگالی بتن استفاده گردد.
بتن اسفنجی
همانطور که میدانیم امروزه صنعت بتن نقش بسیار مهمی در ساخت و سازهای جوامع بشری ایفا میکند و یکی از عوامل بسیار مؤثر در سازههای بتنی در جهان است. در این راستا انجمن سیمان پرتلند (PCA) تحقیقاتی را به منظور استفاده از بتن در دیگر پروژهها آغاز نموده؛ پس از آزمایشات و تحقیقات فراوان موفق شد به راه حل بسیار خوبی به نام بتن اسفنجی (بتن تراوا ) دست یابد. بتن اسفنجی که حاصل این دست رنج بود، توانست تحولات زیادی را در محوطه سازیهای شهرهای اروپا و آمریکا ایجاد کند. البته این نوع بتن هنوز در ایران جا نیفتاده، ولی امید است با تلاش مسئولین ادارات، مهندسین و متخصصین فن این بتن به منظور حفظ بیشتر محیط زیست و مقرون به صرفه بودن مورد استفاده در پروژههای کشورمان نیز قرار بگیرد.
بتن اسفنجی چیست؟
بتن اسفنجی یک مخلوط سنگدانه درشت(شن)،سیمان، آب و ماسه به میزان اندک(وگاهی اوقات بدون ماسه) است. در ساختار این بتن %25-15 (از لحاظ حجم) فضای خالی وجود دارد و این امر موجب عبور آب از داخل این بتن میشود. در بتن اسفنجی از آب نسبت به دیگر انواع بتن کمتر استفاده میشود و این مسأله باعث شده تا پس از ساختن مخلوط بتن آب آن به سرعت تبخیر شده و مخلوط در مدت یک ساعت کاملا" از آب تخلیه خواهد شد.
نسبت مواد مختلف در بتن اسفنجی
برای آشنایی بیشتر با این بتن، در جدول زیر میزان مواد مختلف به کار رفته شده در آن ذکر شده:
نسبت مواد مقدار مواد
1-مواد دارای خواص بتن (البته در مورد مواد دارای خواص سیمای یا همان افزونیهای بتن بعدا" بیشتر توضیح داده میشود.) 270 to 415 kg/m^3 (450to 700 1b/y^3)
2-سنگدانه 1190 to 1480 kg/ m^3 (2000 to 2500 1b/y^3)
3-نسبت آب به سیمان (از لحاظ جرم) 0.27 to 0.30
4-نسبت سنگدانه به سیمان (ازلحاظ جرم) 4 to 4.5:1
5- نسبت سنگدانه ریز (ماسه) به سنگدانه درشت (شن) 0 to 1:1
رفتار بتن اسفنجی
به منظور آشنایی بیشتر با رفتار این بتن، ویژگیهای آن در زیر بیان شده است:
مشخصات مقدار
اسلامپ یا نشست (stump) 20 mm (3/4 in)
چگالی (وزن مخصوص) 1600 to 2000 kg/m^3 (100 to 125 1b/ft^3)
زمان گیرش (setting time) 1 ساعت
تخلخل (از لحاظ حجم) 15% to 25%
میزان نفوذ پذیری (از لحاظ میزان سرعت) 120 L/min to 320 L/m^2/min (3ga1/ft^2/ min to 8 gal /ft^2/min)
مقاومت فشاری 3.5 Mpa TO 28 Mpa (500psi to4000 psi)
مقاومت خمشی 1 Mpa to 3.8 Mpa (150 psi to 550 psi)
افت بتن 200×10^-6
نصب بتن اسفنجی
نصب بتن اسفنجی شامل 4 مرحله اساسی است:
مخلوط کردن
جاگذاری کردن (گماردن، قراردادن)
تراکم و فشرده سازی (کوبیدن )
عمل آوردن بتن
بوجود آوردن، قرار دادن و عمل آوردن بتن اسفنجی همه به جای اینکه در یک کارخانه زیر شرایط یکسان انجام شوند، در محل کار (پای کار) انجام میشوند.
اگر چه بتن اسفنجی میتواند توسط همان تهیه کنندههای بتن توپر تهیه شده و توسط همان کامیونهای بتن توپر تحویل داده شود، اما این ویژگیهای فیزیکی منحصر به فردش است که نیاز به یک پیمانکار با تجربه تخصصی دارد. همچنین تفاوتهای ساختاری ما بین بتن اسفنجی و بتن غیر قابل نفوذ نصب متفاوت آن را نیازمند است.
به هر حال، کیفیت و عملکرد بتن اسفنجی بستگی به میزان آشنایی و عملکرد نصب کننده و خاصیت ضربههای ساختاری (کمپکت) دارد.
این نوع بتن به دلیل مقاومت نسبتاً پایین آن psi400 الی psi 4000 اساس مشخص شده و پذیرفته شدهای برای مقاومت بالا نیست. و مساله مهم تر در موفقیت یک روسازی بتن اسفنجی مقدار پوکی (فضای خالی) آن است.
البته باید بدانیم که زیر سازی این بتن و زمین زیرینش نباید کاملاً غیر قابل نفوذ باشد و باید حداقل اندکی خاک و زیر سازی آن نفوذ پذیری داشته باشد. در مناطق ماسهای هم بتن اسفنجی مستقیماً بالای ماسه گذاشته میشود.
همچنین باید به این موضوع اشاره کرد که یخزدن آب در داخل این بتن مشکلی ایجاد نمیکند، زیرا آزمایشهایی صورت گرفته که در آن بتن اسفنجی را به مدت بیش از 15 سال در آب و هوای سرد گذاشته و آب باران و برف پس از ورود به داخل بتن یخ میزد. کاربرد موفق بتن اسفنجی در این مناطق این مساله را حل نموده است و مشکلی در به کار بردن این بتن در این مناطق وجود ندارد.
نقش مواد افزودنی (مواد دارای خواص سیمانی) در بتن اسفنجی
مواد افزودنی(یا همان مواد دارای خواص سیمانی) که در بتن اسفنجی بکار میروند عبارتند از: رقیقکنندههای سیمان(C 1157، C 595 ASTM )، خاکستر بادی و پوزولان طبیعی (ASTM C 618)، روباره (ASTM C 989) و بخار سیلیس(ASTM C 1240).
حال به برخی از آنها که نقش بسیار مهمی در ساختار بتن دارند و میتوانند به جای سیمان مورد استفاده قرار گیرند(که در ایران از آنها به ندرت استفاده میشود) اشاره میکنیم. در واقع این مواد بر عملکرد زمان گیرش، میزان افزایش مقاومت، تخلخل، نفوذ پذیری و … در بتن تأثیر میگذارند و در یک کلام کلید عملکرد بالای بتن، در استفاده از مواد افزودنی (SCMS) است.
از آن جمله میخواهیم به گاز سیلیس، خاکستر بادی و روباره که همگی دوام بتن را بوسیله کم کردن نفوذ پذیری و شکاف ( ترک خوردگی) افزایش میدهند اشاره میکنیم:
گاز سیلیس (Silica fume): یک فرآورده فرعی (محصول جانبی) از تولید سیلیکون است، و از دانههای خیلی ریز و ذرات کروی شکلی تشکیل شده است و به طور موثری مقاومت و دوام بتن را افزایش میدهد. به طور مکرر برای ارتفاعات بلند ساختمانها به منظور افزایش مقاومت فشاری بتن(با استفاده از گاز سیلیس مقاومت بتن از psi 20000 هم فراتر میرود.) استفاده میشود و میتوان از آن %12- 5 به جای سیمان در بتن استفاده کرد.
خاکستر بادی(fly ash): خاکستر بادی، محصول فرعی انبار زغال سنگ سوزان در نیروگاههای برق است و سالها قبل به عنوان مادهای بیمصرف روی زمین انباشته میشد و بدون استفاده بود. اما حالا به عنوان یک ماده مهم در صنعت سیمان سازی به کار برده میشود و میتوان از آن %65-5 به جای سیمان در بتن استفاده کرد.
روباره (Blast furnace Slag): روباره، محصول فرعی زباله در صنعت پولاد (فولاد) است، و سهم آن در مقاومت و دوام بتن بیشتر است و میتوان از آن %70-20 به جای سیمان در بتن استفاده کرد.
مزایای بتن اسفنجی و موارد استفاده از آن
بتن اسفنجی دارای مزایای اقتصادی و زیست محیطی فراوانی است، که البته مزایای زیست محیطی آن بیشتر مد نظر است. از مزایای اقتصادی آن میتوان به پایین آمدن خرجهای فراوان به منظور هدایت آب باران و فاضلاب اشاره داشت. در واقع میتوان گفت با وجود بتن اسفنجی نیازی به ساختن جویهای آب فراوان در سطح شهر و کنار خیابان و کوچهها و همچنین کانالهای بزرگ آب نیست. زیرا این بتن هر گونه بارندگی را مستقیماً به زمین و سفرههای آب زیرزمینی منتقل میکند و در واقع یک مزیت زیست محیطی نیز محسوب میشود. از دیگر مزایای زیست محیطی آن میتوان به موارد زیر اشاره کرد:
جلوگیری از بروز آب گرفتگی در معابر و مکانها به هنگام بارندگی
جلوگیری از آلوده شدن آب بارندگیها (زیرا اگر زمین غیرقابل نفوذ باشد، آب باران و برف در سطح زمین که آلودگی فراوان دارد جریان مییابد و منجر به آلوده شدن آب بارندگی میشود.)
پر شدن ذخایر آب زیرزمینی
در نقاط سرد که ماندن برف و باران روی زمین (بعد از بارش) منجر به سردتر شدن آن مناطق میشود میتوان با استفاده از این بتن آب باران و برف را به داخل زمین هدایت کرد و از سردتر شدن آن ناحیه جلوگیری کرد.
همچنین میتوان از این نوع بتن در مکانهایی که نیاز به زمین خشک است استفاده کرد مثلاً در زیر سازی چمنهای استادیومهای فوتبال.
همچنین در مناطق سردسیر، بدلیل عبور آب از این بتن از یخ زدگی سطح معابر و در نتیجه ایجاد خطر جلوگیری میکند که شهرداریهای محترم میتوانند از این بتن در پیادهرو سازیها و محوطه سازی پارکها، پارکینگها و معابری که مشکل آبگیری دارند استفاده نمایند.(مترجم)
ایجاد مناظری زیبا به هنگام بارندگی، زیرا با وجود این بتن دیگر هنگام بارندگی آب گرفتگی وجود ندارد.
بتن الیافی
تکنولوژی "بتنالیافی" نمونة دیگری از کاربرد کامپوزیتها بهعنوان یک فناوری نوین در صنعت عمران و ساختوساز میباشد.
محورهای سه گانة زیر را میتوان به عنوان مهمترین فناوریهایی که لازم است مورد توجة دستاندرکاران صنعت ساختمان کشور واقع شود، برشمرد:
الف) روشهای سبکسازی بنا:
کشور ما و بالاخص پایتخت بزرگ آن در منطقهای زلزلهخیز قرار دارد. همانطور که میدانید میزان خسارات و خرابیهای وارد بر یک بنا در اثر تکانهای زلزله، با وزن آن بنا رابطة مستقیم دارد. هر چه بنا سنگینتر ساخته شود، در برابر خطر ویرانی زلزله آسیبپذیرتر خواهد بود. بنابراین هر اندازه که با بهرهگیری از فناوریهای نوین وزن یک ساختمان را کاهش دهیم، سازه در برابر ویرانی ایمنتر خواهد بود.
به طور مثال میتوان ازپانلهای ساندویچی و یا قطعات سبک پیشساخته در ساخت بنا کمک گرفت. در یک ساختمان، اعضایی مانند دیوارهای تیغهایشکل نازک وجود دارد که وظیفة آنها تنها جدا کردن فضای اتاقها از همدیگر است و مسئله مقاومت و تحمل بار در مورد آنها، در درجة بعدی اهمیت قرار دارد. در ساخت این گونه اعضا میتوان به جای استفاده از مصالح سنگین سنتی، از مصالح سبک جدید همچون سفال یا بتنهای سبک کمک گرفت و یا قطعات سبک پیشساخته را به خدمت گرفت.
ب) روشهای تولید سریع و اصولی بنا:
امروزه استفاده از سازههای پیشساخته یکی ازسریعترین و اصولیترین روشهای ساخت بنا و پاسخگویی به نیاز بالای افراد جامعه به انبوهسازی مسکن میباشد. از انجا که حجم اصلی بنا به شکل قطعات از پیشساختهشده در محیط مناسب کارخانه و با استانداردهای صنعت ساختمان تولید میشود، بنای نهایی از کیفیت و یکپارچگی بالایی برخوردار است. از سویی بهعلت سبکی خاص بنا، ساختار سازهای ویژه آنها و اتصال مناسب اجزای سازه، ساختمان میتواند شکل خود را در تکانهای بسیار شدید نیز تا حد زیادی حفظ نماید. استفاده از این تکنولوژی سالها است که در بسیاری از کشورهای پیشرفتة دنیا مورد توجه صنعت عمران واقع شده است و از مهمترین روشهای انبوهسازی مسکن به شمار میآید. اما متأسفانه در کشور ما چنان که باید از این فناوری استقبال نشده استو لازم است تا مورد توجه مسئولین، سیاستگذاران و صنعتگران قرار گیرد.
ج- بهرهگیری از مواد جدید
از جمله مواد جدیدی که جایگاه ویژهای در ساختوساز بنا به خود اختصاص دادهاند، افزودنیهای بتن و الیاف تقویتکننده را میتوان نام برد. استفاده از افزودنیهای بتن باعث بهبود خواص مطلوب بتن همچون مقاومت میگردد و در بعضی موارد با کاهشوزن بتن، مصالح بسیار سبکی را فرا راه مهندسین سازنده بنا قرار میدهد. بدون بهرهگیری از این افزودنیها بنای برج بزرگ میلاد در شهر تهران امکانپذیر نمیبود.
الیاف تقویتکننده نیز از دیگر مواد عصر حاضر هستند که کاربردهای فراوانی در قسمتهای مختلف ساختمان یافتهاند. این الیاف که بیشتر شامل الیاف شیشه، پلیپروپیلن و گاه کربن نیز میشود، در ساخت انواع بتنهای الیافی کاربرد فراوان دارند. همچنین از الیاف شیشه در تولید آرماتورهای سبک و بسیار مقاوم در برابر خوردگی نیز بهره میگیرند. این الیاف، جایگاه نسبتاً مناسبی در تعمیر بناها و تقویت سازههای صدمهدیده دارند و میتوانند مقاومت پیچشی و برشی مناسبی را پدید آورند. علاوه بر اینها از ورقههای پارچة فایبرگلاس در تقویت انواع قطعات ساختهشده از بتن مسلح میتوان استفاده نمود.
بتن الیافی در حقیقت نوعی کامپوزیت است که با به کارگیری الیاف تقویتکننده داخل مخلوط بتن، مقاومت کششی و فشاری آن، فوقالعاده افزایش مییابد. این ترکیب کامپوزیتی، یکپارچگی و پیوستگی مناسبی داشته و امکان استفاده از بتن به عنوان یک مادة شکلپذیر جهت تولید سطوح مقاوم پرانحنارا فراهم میآورد. بتن الیافی از قابلیت جذب انرژی بالایی نیز برخوردار است و تحت اثر بارهای ضربهای به راحتی از هم پاشیده نمیشود. شاهد تاریخی این فناوری، کاربرد کاهگل در بنای ساختمان است. در واقع بتن الیافی نوع پیشرفتة این تکنولوژی میباشد که الیاف طبیعی و مصنوعی جدید، جانشین کاه و سیمان جانشین گل به کار رفته در ترکیب کاهگل شدهاند
امروزه با استفاده از انواع الیاف شیشه، پلیپروپیلن، فولاد و بعضاً کربن، تولید انواع بتنهای کامپوزیتی در کاربردهای مختلف صنعتی ممکن گردیده و بهکارگیری آنها درکشورهای پیشرفتة دنیا مورد قبول بخش ساختمان و عمران واقع شده است.
هر فناوری همواره کاربردها و محدودیتهای خاص خود را دارد.بتن الیافی خواص مناسبی همچون شکلپذیری بالا، مقاومت فوقالعاده، قابلیت جذب انرژی و پایداری در برابر ترک خوردن را دارا میباشد که متناسب با آنها میتوان موارد کاربرد فراوانی برای آن یافت. به طور مثال در ساخت کف سالنهای صنعتی، میتوان از این نوع بتن به جای بتن آرماتوری متداول سود جست این نوع بتن از بهترین مصالح مورد استفاده در ساخت بناهای مقاومبهضربه، همچون سازه پناهگاهها و انبارهای نگهداری مواد منفجره به شمار میرود و بنای شکل گرفته از بتن، قابلیت فوقالعادهای در جذب انرژی ضربه دارد. همچنین در ساخت باند فرودگاهها به خوبی میتوان از این نوع بتن کمک گرفت. موارد دیگری از به کارگیری این بتن، ساخت قطعات پیش ساخته ساختمانی همچون پانلهای سایبان و یا پاشش بتن روی سطوح انحنادار همچون تونلها میباشد. بهکارگیری این بتن در بنای یک سازه علاوه بر موارد یاد شده از مزایایی همچون عایق بودن سازه در برابر صدا و سرعت بالای اجرا نیز برخوردار است.
اما از آنجا که نحوه قرار گرفتن الیاف داخل بتن کاملاً تصادفی میباشد، از این بتن معمولاً نمیتوان به نحو مطلوبی در ساخت تیرها و ستونها بهره گرفتو در این نوع سازهها استفاده از روش سنتی و شبکهبندی فولادی بهصرفهتر و مناسبتر میباشد. لازم است به این نکته توجه شود که ناکارآمدی یک تکنولوژی جدید در نقاط ضعف خود نباید مانع نادیده گرفتن کاربردهای مناسب آن در نقاط قوت آن و عدم توجه به آن گردد.
باید اعتراف کرد که استفاده از بتن الیافی در همة موارد از بتن سنتی بهصرفهتر نمیباشد. اما بر اساس برآوردهایی که توسط بعضی متخصصین کشور انجام گرفته است، در جاهایی که سرعت اجرای بالا مد نظر است و یا نیاز به پاشش بتن (شاتکریت) روی سطوحی است که شبکهبندیهای سنتی مشکل و زمانبر بوده یا جوابگوی کار نیست، هزینة استفاده از بتن الیافی نسبت به مشابه سنتی خود کمتر میباشد. این مزیتها، علاوه بر مزیت سادگی و سرعت عمل بالاتر موجود در تکنولوژی بتن الیافی است.
اگر میبینیم که در کشوری همچون ترکیه، بهکارگیری بتن الیافی به جای روشهای سنتی، مقرونبهصرفهتر از کشور ماست، ریشههای آن را در سرمایهگذاری و تلاش سازمانیافته جهت اقتصادی نمودن استفاده از این تکنولوژی جدید میتوان یافت. اما اگر ما از رویآوردن به فناوری جدید به علت ریسک سرمایهگذاری پرهیز کنیم خواهیم دید که تکنولوژی سنتی در غیاب بهرهگیری از فناوری نوین، رقم بسیار بالایی از سرمایههای ما را به هدر خواهد داد. به طور مثال، ریزدانههای تولید شده در کشور ما که به روشهای قدیمی غیراستاندارد تولید میشوند، باعث افزایش درصد سیمان به کار رفته در بنا میشود و همین امر موجب ظهور ترک و ضایعات در بتن حاصل نیز می گردد.
راهکارهایی جهت اقتصادینمودن استفاده از بتن الیافی
به عنوان راهکار باید سه نکتة اساسی را مورد توجه قرار دهیم:
1) نخست آنکه هزینة استفاده از یک تکنولوژی، کاملاً وابسته به سطحی از آن تکنولوژی است که نسبت به کسب و انتقال آن اقدام میشود. کشورهای پیشرفتة جهان که تکنولوژی نوین خود را از سطوح اولیه تحقیقاتی کسب کردهاند، چون کاملاً بر تکنیکها و دانش پایهای آن واقف و مسلط هستند، متحمل هزینههای کمتری شدهاند. آنها با تکیه بر همین آگاهی و اشراف، با بهبود فرایندها، قیمت نهایی را در طول زمان کاهش خواهند داد. اما اگر ما بخواهیم تمام این تکنولوژی را صرفاً در سطح یک محصول آماده، به کشور وارد کنیم، طبیعی است که متحمل هزینههای سنگینی خواهیم شد و محصول نهایی نیز به صرفه نخواهد بود.
2) دومین مسئلهای که باید در جهت ارزیابی اقتصادی یک تکنولوژی مورد توجه واقع شود، آن است که اکتساب و پرورش یک تکنولوژی از سطوح نخست تحقیقات، نیاز به یک سرمایهگذاری اولیه دارد.دستیابی به نحوه اجرای مناسب، تکنولوژی ساخت و آموزش و گسترش آن در جامعه، نیازمند صرف بودجه لازم توسط دستاندرکاران و خصوصاً دولت میباشد. این هزینهها بعداً در طول عمر تکنولوژی و ارایة محصول به بازار جبران خواهد شد و نهایتاً به سوددهی منجر میگردد. عدم پرداختن به تحقیق و توسعه و بهرهگیری از تکنولوژی نوین، علاوه بر آن که نمیتواند پاسخگوی نیاز روز صنعت ساختمان باشد، در درازمدت، هزینه بسیار بالایی نیز به ما تحمیل میکند.
3) آخرین نکتة مورد توجه آن است که سیاستگذاری اصولی برای ایجاد یک شبکة کاری تکنولوژی جهت کارکرد مناسب و نیل به بهرهوری اقتصادی، نقش حیاتی در اکتساب صحیح یک تکنولوژی دارد. عدم وجود این سیاستها باعث میگردد تا حتی اگر یک مجموعه یا کارخانه بخواهد خود به سمت فناوری نوین روی آورد، متحمل هزینة مضاعف گزافی شود که از توان آن مجموعه خارجباشد. برای آنکه کارخانهها و صنعتگران بتوانند به عنوان یک جزء شبکة تکنولوژی در این مسیر گام بردارند، باید سایر نهادها و اجزای لازم نیز در شبکه حضور داشته و هماهنگ عمل کنند. ایجاد چنین شبکة منسجم، جز به اهتمام سیاستگذاران و فرهنگسازی میسر نخواهد بود.
اقدامات صورت گرفته در زمینه تکنولوژی بتن الیافی
اگرچه در کشور ما تحقیقات تئوری و فعالیتهای تجربی نسبتاً مناسبی در زمینة گسترش و کاربرد تکنولوژیهای بتن الیافی صورت گرفته است، اما حقیقت آن است که گسترش این فناوری بیش از همه وابسته به اعلام نیاز از سوی صنعت و مقرون بهصرفهنمودن کاربری آن از سوی محققان کشور میباشد. چند سال پیش کنفرانسی در زمینه تکنولوژی بتن الیافی با هدف شناساندن فناوری مذکور، در دانشگاه صنعتی شریف برگزار گردید. در این کنفرانس، محققان و سخنرانان از مراکز مختلفی به ایراد سخنرانی و ارایه مقاله پرداختند. به طور مثال در یک نمونه از کارهای ارائه شده، مسئله بهصرفهبودن استفاده از این نوع بتن مورد بررسی و مطالعه کارشناسی قرار گرفته بود. حاصل این بررسی مؤید آن بود که در بعضی پروژههای صنعتی، بهکارگیری بتن الیافی نسبت به روشهای متداول استفاده از شبکهبندی فولادی، بسیار اقتصادیتر، سریعتر و آسانتر میباشد.
برگزاری این کنفرانس اثرات مثبت زیادی در شناسایی و توسعة این فناوری داشت. پس از آن، بخشهایی از صنعت و دانشگاه به بررسی امکان تولید الیاف گوناگون بالاخص الیاف شیشه و فولاد پرداختند. همچنین به تدریج بتن الیافی با الیاف تقویتکنندة پلیپروپیلن به بازار مصرف راه یافت و در انجام پروژههایی به کار گرفته شد. در مجموع قدمهای مثبتی در این جهت برداشته شده است اما سرعت این حرکت نسبتاً کند بوده است.